Grade 9
Subject Bulletin
Science
Alberta Provincial Achievement Testing
2018–2019
This document was written primarily for:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td></td>
</tr>
<tr>
<td>Teachers</td>
<td>✓ of Grade 9 Science</td>
</tr>
<tr>
<td>Administrators</td>
<td>✓</td>
</tr>
<tr>
<td>Parents</td>
<td></td>
</tr>
<tr>
<td>General Audience</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>

Distribution: This document is posted on the [Alberta Education website](https://www.gov.ab.ca/education).

Copyright 2018, the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Provincial Assessment Sector, 44 Capital Boulevard, 10044 108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Special permission is granted to Alberta educators only to reproduce, for educational purposes and on a non-profit basis, parts of this document that do not contain excerpted material.

Excerpted material in this document shall not be reproduced without the written permission of the original publisher (see credits, where applicable).
Contents

Grade 9 Science Assessment ... 1

NEW General Description ... 1

NEW Blueprint ... 2

NEW Description of Science Assessment Standards 3

Preparing Students for the Science Test .. 4

 * Suggestions for Preparing Students .. 4
 * Special-format Practice Tests ... 4
 * Suggestions for Answering Questions .. 5

Opportunities to Participate in Test Development Activities 6

 * Field Testing ... 6
 * Benefits of Field Testing .. 7
 * Working Groups for Test Development 8

Depth of Coverage ... 8

 * Mechanical Energy .. 8

NEW WHMIS 2015 .. 9

 * Pictograms .. 10

Appendix 1: Science 9 Data Sheet ... 11

NEW Appendix 2: Example of Grade 9 Science 2019 PAT Instructions Pages .. 13

NEW Appendix 3: General Purpose Answer Sheet 16

Contacts 2018–2019 ... 17

Please note that if you cannot access one of the direct website links referred to in this document, you can find achievement test-related materials on the Alberta Education website.

Throughout this subject bulletin, references to specific sections of the General Information Bulletin are italicized. These references will provide further information.
NEW

General Description

The Grade 9 Science Provincial Achievement Test is based on science learnings in which the nature of science, technology, and society are integrated components.

Knowledge and skill components are integrated in the test. Knowledge components relate to a fundamental understanding of both the concepts and the processes of science. Skill components relate to the application of science processes and the use of higher-level thinking to solve problems. Skill components consist of three types of skill:

- inquiry skills
- technological problem-solving skills
- societal decision-making skills

This assessment consists of 55 machine-scored questions: 50 multiple-choice questions, each worth one mark, and five numerical-response questions, each worth one mark. The five numerical-response questions are interspersed among the multiple-choice questions.

The following briefly describes the two item formats:

- Multiple-choice items provide students with four response options, of which only one is correct.
- Numerical-response items require students to generate a response (in symbolic form) to a particular problem rather than selecting a response from a list of four options.

The test is developed to be completed in 75 minutes; however, students have up to 150 minutes to complete the test should they need it.

Students record their answers on a tear-out answer sheet.

Students require HB pencils and erasers. A calculator is recommended.

Students may not use a dictionary, a thesaurus, or other reference materials when writing the test.

If a word that warrants a definition is used on a test, it will be defined on the page on which it appears.

A tear-out data sheet will be included with the Grade 9 Science Provincial Achievement Test. A sample data sheet is included in the appendix.
Blueprint

The blueprint below shows the topics and reporting categories under which questions are classified. The number of questions in each reporting category is approximate.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Question Distribution by Reporting Category</th>
<th>Number (Percentage) of Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Knowledge</td>
<td>Skills</td>
</tr>
<tr>
<td>• Biological Diversity</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>• Matter and Chemical Change</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>• Environmental Chemistry</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>• Electrical Principles and Technologies</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>• Space Exploration</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Number (Percentage) of Questions</td>
<td>22 (40%)</td>
<td>33 (60%)</td>
</tr>
</tbody>
</table>
Description of Science Assessment Standards

The following statements describe what is expected of Grade 9 students at the acceptable standard and the standard of excellence based on outcomes in the program of studies. These statements represent examples of the standards against which student achievement is measured. It is important to remember that one test cannot measure all the outcomes in the program of studies.

<table>
<thead>
<tr>
<th>Acceptable Standard</th>
<th>Standard of Excellence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who meet the acceptable standard in Grade 9 Science have a basic understanding of the conceptual and procedural knowledge outlined in the program of studies. They are able to</td>
<td>Students who meet the standard of excellence in Grade 9 Science have an exceptional understanding of the conceptual and procedural knowledge outlined in the program of studies. They are able to</td>
</tr>
<tr>
<td>• apply concepts and basic procedures to simple and familiar situations, but they may be challenged when applying these concepts and procedures to unfamiliar or complex situations. For example, students are able to describe ongoing changes in biological diversity through extinction and extirpation of native species, but they may have difficulty interpreting the role of environmental factors in causing these changes.</td>
<td>• apply knowledge in complex and novel situations. For example, not only can they identify the chemical factors that affect the health and distribution of living things, but they can also predict the possible outcomes of changing chemical factors on living things and evaluate their effects on the quality of the environment.</td>
</tr>
<tr>
<td>• apply higher-level thinking skills to familiar situations. However, students may have difficulty applying these skills in new or unfamiliar situations. For example, they are able to predict the effects of linking a familiar and identical electrical load in series or parallel, but they may have difficulty predicting the effects of linking different or unfamiliar types of electrical loads in these circuits.</td>
<td>• apply higher-level thinking skills to unfamiliar situations. In addition, they can easily and quickly solve problems that they have direct experience with and that require single-step or multi-step solutions.</td>
</tr>
<tr>
<td>• use basic skills to show what they know and solve novel, real-life problems that are simple or that require single-step solutions</td>
<td>• solve problems in more than one way and see more than one solution to some problems. Their problem-solving approach may involve more than one manipulated variable and may include logical explanations of procedures and results.</td>
</tr>
<tr>
<td>• apply more advanced skills or follow multi-step procedures to solve familiar real-life problems in which they have had experience. For example, in a problem-solving activity to identify problems in developing technology for life in space, these students will be able to describe technologies for life-support systems. However, students likely will not interpret the scientific principles on which the technologies are based.</td>
<td>• persistently solve problems and view a situation from a number of perspectives. Not only do they have a high level of awareness and understanding of how science and technology affect them personally, but they can also apply this awareness and understanding to societal issues.</td>
</tr>
<tr>
<td>• use the basic procedures of scientific inquiry, technological problem solving, and societal decision making. However, they may have difficulty with the application of more advanced skills, and they may have limited ability to make connections between science, technology, and society.</td>
<td>• skilfully use the basic procedures of scientific inquiry, technological problem solving, and societal decision making</td>
</tr>
<tr>
<td>• use advanced skills and make connections between science, technology, and society</td>
<td>• use advanced skills and make connections between science, technology, and society</td>
</tr>
</tbody>
</table>
Preparation Students for the Science Test

Suggestions for Preparing Students

The best way to prepare students for writing the provincial achievement test is to teach the curriculum well and to ensure that students know what is expected. Many of the skills and attitudes that support test writing are, in fact, good skills and strategies for approaching all kinds of learning tasks.

Note that the questions on the science test are placed in real-life contexts.

Teachers are encouraged to familiarize their students with the types of questions that will appear on the test. Released Materials from previously secured tests are available on the Alberta Education website.

Teachers are also encouraged to share the following information with their students to help them prepare for the Grade 9 Science Provincial Achievement Test.

Special-format Practice Tests

To provide students an opportunity to practise provincial achievement test-style questions and content in Braille, audio, large print, or coloured print versions, Alberta Education is making special-format practice tests available. Tests are offered in all subjects with a corresponding provincial achievement test. Alberta schools with registered Alberta K-12 students may place orders for these tests. Braille tests are available in English and, by request, in French. All tests are provided free of charge, but limits may be placed on order volumes to ensure access for everyone.

For more information or to place an order, contact

Laura LaFramboise
Distribution Coordinator, Examination Administration
780-982-1644 or Laura.LaFramboise@gov.ab.ca
Suggestions for Answering Questions

• Before you begin, find out how much time you have.
• Ask questions if you are unsure of anything.
• Skim through the whole test before beginning. Find out how many questions there are, and plan your time accordingly.
• Answer the easier questions first; then go back to the more difficult ones.
• Do not spend too much time on any one question. Make a mark (*) or ?) beside any questions you have difficulty with, and go back to them if you have time.
• Read each question carefully, underline or highlight key words, and try to determine an answer before looking at the choices.
• Read all the choices and see which one best fits the answer.
• When you are not sure which answer is correct, cross out any choices that are wrong, and then select the best of the remaining choices.
• If time permits, recheck your answers.
• Double-check to make sure that you have answered everything before handing in the test.
• Read the information given using the strategy that works best for you. You should either
 – look at all the information and think carefully about it before you try to answer the question or
 – read the questions first and then look at the information, keeping in mind the questions you need to answer
• Make sure that you look at all forms of the information given. Information may be given in words, charts, pictures, graphs, or maps.
• When information is given for more than one question, go back to the information before answering each question.
• Check your work when you calculate an answer, even when your answer is one of the choices.
• When answering “best answer” questions, be sure to carefully read all four alternatives (A, B, C, and D) before choosing the answer that you think is best. These questions will always include a boldfaced qualifier such as best, most strongly, or most clearly in their stems. All the alternatives (A, B, C, and D) are, to some degree, correct, but one of the alternatives will be “best” in that it takes more of the information into account or can be supported most strongly by reference to the information.
Opportunities to Participate in Test Development Activities

Field Testing

All Provincial Achievement Testing Program test questions are field tested before use. By “testing” the test questions, students who write field tests have an opportunity for a practice run at writing questions that could be used on future provincial achievement tests. As well, the teachers have an opportunity to comment on the appropriateness and quality of the test questions.

Through the online field test request system, teachers can create and modify field test requests and check the status of these requests. Information regarding the field test process and the request system is available at Provincial Achievement Tests.

Once the completed requests are received by the Provincial Assessment Sector, classes will be selected to ensure that a representative and sufficiently large sample of students from across the province take part in the field test. Every effort will be made to place field tests as requested; however, because field tests are administered to a prescribed number of students, it may not be possible to fill all requests.

For further information about provincial achievement field testing, see the Field Testing section of the General Information Bulletin.
Benefits of Field Testing

How do field tests help teachers and students?

Teachers receive each student’s score promptly, gaining useful, immediate information about their student’s level of expertise and knowledge. Students also benefit from writing a test that duplicates some of the experience of writing a provincial achievement test. Field tests provide students and teachers with good examples of the style and content of questions that may appear on provincial achievement tests. Finally, students, teachers, and parents can be reassured that the questions on the provincial achievement tests have undergone a rigorous process of development, improvement, and validation.

Why are field tests necessary?

Field testing is an essential stage in the development of fair, valid, and reliable provincial achievement tests. Field testing is basically a process of “testing a test” and “testing questions” before they become part of a provincial achievement test. Potential provincial achievement test questions are administered to students in Grade 9 throughout the province to determine their difficulty level and appropriateness. Ideally, each field test requires a large student sample to provide the examination developers with reliable information (i.e., statistical data and written validation comments from teachers and students).

How are field test data used?

The data received from field tests show the reliability of each question. Sometimes, after one field test round, it is clear that certain questions work very well in terms of fairness, validity, and appropriateness to course content. These questions then move into the examination bank to be used at a future date.

Other questions or sets of questions may not perform as well as we require. These questions are subject to revision and review and then retested in a second or third field test with the aim of generating questions that meet our standards. These changes are influenced by the written comments of students and teachers, who provide valuable advice about the appropriateness of the questions, writing time limits, test length, text readability, artwork/graphics clarity and suitability, and question difficulty.
Working Groups for Test Development

Teacher involvement in the development of provincial achievement tests is important because it helps to ensure the validity and appropriateness of the assessments.

Teacher working groups are used throughout the test development process to create raw forms of test questions and to review and revise draft forms of provincial achievement tests. These working groups usually meet for one or two days, two or three times per year. Occasionally, these meetings are held on weekends or in the summer.

To be selected to participate in a working group, a teacher must be nominated by a school administrator or superintendent, and that nomination must be approved by the superintendent. To ensure that selected working-group members have appropriate subject matter training and teaching experience, nominees are asked to provide their information to their school administrator so that it can be forwarded to the Provincial Assessment Sector at Alberta Education through the superintendent.

To be eligible to serve on a test development working group, a teacher should have taught Grade 9 Science within the past three years. Although the call for submissions occurs in early September, teachers are welcome to have their names submitted at any time.

Teachers participating in test development and/or test review working groups are selected from the working-group nominees provided by superintendents of school jurisdictions.

Depth of Coverage

Mechanical Energy

A clear understanding of the transformations of energy before its intended use is necessary to discuss efficiency comparisons. Mechanical energy of an object or a system is the sum of the potential and kinetic energy of an object or a system.
NEW WHMIS 2015

As of the 2018–2019 school year, any Workplace Hazardous Materials Information System (WHMIS) pictograms that appear on provincial assessments will be WHMIS 2015 pictograms. WHMIS has been used in Canada since 1988 for labelling and classifying hazardous workplace chemicals. Countries around the world are adopting the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) to enable a consistent international chemical classification and labelling system. WHMIS 1988 in Canada was amended in February 2015 to incorporate the GHS. The new system is called WHMIS 2015.

WHMIS 2015 includes changes to
- pictograms
- labels
- hazard classes and categories
- safety data sheets
- education and training

Further information about these changes can be found at Science (7-9) Program Supports under the heading Safety in the Science Classroom.
Pictograms

WHMIS 2015

<table>
<thead>
<tr>
<th>Flame</th>
<th>Flame Over Circle</th>
<th>Gas Cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>For fire hazards</td>
<td>For oxidizing hazards</td>
<td>For gases under pressure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exploding Bomb</th>
<th>Biohazardous Infectious Materials</th>
<th>Corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>For explosion or reactivity hazards</td>
<td>For organisms or toxins that can cause diseases in people or animals</td>
<td>For corrosive damage to metals, as well as skin, eyes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclamation Mark</th>
<th>Health Hazard</th>
<th>Skull and Crossbones</th>
</tr>
</thead>
<tbody>
<tr>
<td>May cause less serious health effects</td>
<td>May cause or suspected of causing serious health effects</td>
<td>Can cause death or toxicity with short exposure to small amounts</td>
</tr>
</tbody>
</table>
Appendix 1: Science 9 Data Sheet

Periodic Table of the First Eighteen Elements

Legend for Elements

- **Solid**
- **Liquid**
- **Gas**

Key:

- **Atomic number**
- **Symbol**
- **Name**
- **Atomic mass**
- **Most common ion charge**

Legend: The legend denotes the states of elements at a temperature of 25 °C.

1. **H** - Hydrogen
2. **Be** - Beryllium
3. **Li** - Lithium
4. **Na** - Sodium
5. **N** - Nitrogen
6. **O** - Oxygen
7. **F** - Fluorine
8. **Cl** - Chlorine
9. **Ar** - Argon
10. **Ne** - Neon
11. **Mg** - Magnesium
12. **Si** - Silicon
13. **P** - Phosphorus
14. **S** - Sulfur
15. **Al** - Aluminum
16. **Cl** - Chlorine
17. **Br** - Bromine
18. **K** - Potassium

Note: The states of elements at a temperature of 25 °C.
Electricity Formulas

\[R = \frac{V}{I} \]

\[E = Pt \]

\[P = IV \]

Percent efficiency = \(\left(\frac{\text{output}}{\text{input}} \right) \times 100\% \)
Appendix 2: Example of Grade 9 Science 2019 PAT Instructions Pages

Grade 9 Provincial Achievement Test
Science

Description
- This test consists of 55 machine-scored questions: 50 multiple-choice questions, each worth one mark, and 5 numerical-response questions, each worth one mark.

Time: 75 minutes. You have up to 150 minutes to complete this test should you need it.

Instructions
- Turn to the last two pages of the test booklet. Carefully fold and tear out the 2-sided data sheet and the machine-scored answer sheet along the perforations.

- Calculators are recommended but not required.

- You may not use a dictionary, a thesaurus, or other reference materials.

- Read each question carefully and choose the correct or best answer.

- Use only an HB pencil to mark your answer.

- If you change an answer, erase your first mark completely.

- Try to answer every question.

- Now read the detailed instructions for answering multiple-choice and numerical-response questions.

- When you have completed the test, please answer the survey question, which appears after the last test question.

You may write in this booklet if you find it helpful. Make sure that your answers are placed on the answer sheet.

2019
Multiple Choice

- Each question has four possible answers from which you are to choose the **correct** or **best** answer.

- Locate the question number on the separate answer sheet provided and fill in the circle that corresponds to your choice.

Examples

This test is for the subject of

A. science
B. mathematics
C. language arts
D. social studies

Answer Sheet

- Circle 3, fill in 0

Which of the following rows identifies the subject and grade level of this test?

<table>
<thead>
<tr>
<th>Row</th>
<th>Subject</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Science</td>
<td>8</td>
</tr>
<tr>
<td>B.</td>
<td>Science</td>
<td>9</td>
</tr>
<tr>
<td>C.</td>
<td>Mathematics</td>
<td>8</td>
</tr>
<tr>
<td>D.</td>
<td>Mathematics</td>
<td>9</td>
</tr>
</tbody>
</table>

Answer Sheet

- Circle 1, fill in 1, 0, 0

When there are no clouds, during the day the sky appears **i** and at night the sky appears **ii**.

The statement above is completed by the information in row

<table>
<thead>
<tr>
<th>Row</th>
<th>i</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>B.</td>
<td>blue</td>
<td>black</td>
</tr>
<tr>
<td>C.</td>
<td>white</td>
<td>blue</td>
</tr>
<tr>
<td>D.</td>
<td>white</td>
<td>black</td>
</tr>
</tbody>
</table>

Answer Sheet

- Circle 1, fill in 1, 0, 0

Numerical Response

- Record your answer on the answer sheet provided by writing it in the boxes and then by filling in the corresponding circles.

- Enter your answer, one digit per box, beginning in the left-hand box. A decimal point, if needed, goes in its own box. Leave any unused boxes blank.

Examples

Calculation Question and Solution

\[
D = \frac{m}{V}
\]

What is the density of a liquid if 95 g of the liquid has a volume of 15.2 mL?

Density = ______ g/mL

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

Answer: 6.25

Record 6.25 on the answer sheet

- Fill in the corresponding circles

- Circle 0, fill in 1, 2, 5
Correct-order Question and Solution

Listed below are three electrical appliances.

1. Oven
2. Toaster
3. Blender

When the appliances listed above are placed in alphabetical order, the order is ______, ______, and ______.

(Record all three digits of your answer in the numerical-response section on the answer sheet.)

Answer: 312

> Record 312 on the answer sheet

Matching Question and Solution

<table>
<thead>
<tr>
<th>Sense</th>
<th>Organ</th>
<th>Type of Stimulus Detected by Organ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hearing</td>
<td>7 Light</td>
</tr>
<tr>
<td>2</td>
<td>Smell</td>
<td>8 Odour</td>
</tr>
<tr>
<td>3</td>
<td>Vision</td>
<td>9 Sound</td>
</tr>
<tr>
<td>4</td>
<td>Nose</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Eyes</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ears</td>
<td></td>
</tr>
</tbody>
</table>

Using the numbers above, choose one sense and match it with the organ associated with that sense and with the type of stimulus detected by that organ. (There is more than one correct answer.)

Number: ______ ______ ______

(Record all three digits of your answer in the numerical-response section on the answer sheet.)

Answer: 169 or 248 or 357

> Record 169 on the answer sheet

Record 248 or 357 in the same manner.
Appendix 3: General Purpose Answer Sheet

Grade 9 Science Achievement Test

Numerical Response

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Multiple Choice

<table>
<thead>
<tr>
<th>Question</th>
<th>Option A</th>
<th>Option B</th>
<th>Option C</th>
<th>Option D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time Taken:

- [] January
- [] May
- [] June
Contacts 2018–2019

Provincial Assessment Sector
Dan Karas, Executive Director
Provincial Assessment Sector
780-422-4848
Dan.Karas@gov.ab.ca

Grade 3, 6, and 9 Provincial Assessment
Nicole Lamarre, Director
Student Learning Assessments and Provincial Achievement Testing
780-427-6204
Nicole.Lamarre@gov.ab.ca
Gilbert Guimont, Director
French Assessment
780-422-3535
Gilbert.Guimont@gov.ab.ca

Senior Managers
Julia Lee-Schuppli
Gr. 3 English Language/Literacy
780-422-3338
Julia.LeeSchuppli@gov.ab.ca
Renate Taylor Majeau
Gr. 3 Numeracy (English and French)
780-422-2656
Renate.TaylorMajeau@gov.ab.ca
Peggy Lee Peters
Gr. 3 Francophone and French Immersion Literacy
780-422-5464
PeggyLee.Peters@gov.ab.ca
Robyn Pederson
Gr. 6 English Language Arts and Social Studies
780-415-2023
Robyn.Pederson@gov.ab.ca
Denis Dinel
Gr. 6 and 9 Français/French Language Arts
780-422-9424
Denis.Dinel@gov.ab.ca
Kelly Rota
Gr. 6 and 9 Mathematics
780-422-4365
Kelly.Rota@gov.ab.ca
Kelty Findlay
Gr. 6 and 9 Science
780-415-6120
Kelty.Findlay@gov.ab.ca
Harvey Stables
Gr. 9 English Language Arts and Social Studies
780-422-2913
Harvey.Stables@gov.ab.ca

Ray Shapka
Knowledge & Employability (K&E)
780-422-2786
Ray.Shapka@gov.ab.ca

Exam Administration
Pascal Couture, Director
Exam Administration and Production
780-492-1462
Pascal.Couture@gov.ab.ca
Pamela Klebanov, Senior Manager
Business Operations and Special Cases
780-492-1443
Pamela.Klebanov@gov.ab.ca
Steven Diachuk, Coordinator
Field Testing, Special Cases, and GED
780-492-1453
Steven.Diachuk@gov.ab.ca

Special Cases Team
Exam Administration
special.cases@gov.ab.ca

Inquiries about field testing
can be sent by email to
field.test@gov.ab.ca

Provincial Assessment Sector
Mailing Address
Provincial Assessment Sector, Alberta Education
44 Capital Boulevard
10044 108 Street NW
Edmonton AB T5J 5E6
Telephone: 780-427-0010
Toll-free within Alberta: 310-0000
Fax: 780-422-4200
Alberta Education website:
education.alberta.ca

Client Services Help Desk:
Telephone: 780-427-5318
Toll-free within Alberta: 310-0000
Email: cshelpdesk@gov.ab.ca
Office Hours:
Monday through Friday, 8:15 a.m. to 4:30 p.m.
The office is open during the lunch hour.