Outcomes with Assessment Standards

for
Mathematics 10-3
2012

This resource is intended to assist teachers with the
provincial implementation of Mathematics 10-3

Alberta Education Cataloguing in Publication Data

Alberta. Alberta Education.
Outcomes with assessment standards for mathematics 10-3.
ISBN 978-0-7785-9885-5 (PDF)
Available online: www.education.alberta.ca/teachers/program/math/educator/materials.aspx

1. Mathematics - Study and teaching (Secondary) - Standards - Alberta.
2. Education - Curricula - Alberta.
3. Educational tests and measurements - Alberta. I. Title.

QA14.C2A3 A333 2012
For further information, contact:
Alberta Education
Programs of Study and Resources Sector: Mathematics, Arts and Communication
8th Floor, 44 Capital Boulevard
10044 - 108 Street NW
Edmonton, Alberta T5J 5E6
Telephone: 780-427-2984 in Edmonton or
toll-free in Alberta by dialling 310-0000
Fax: 780-422-3745

The primary audience for this resource is:

Teachers	\checkmark
Administrators	
Students	
Parents	

Copyright © 2012, the Crown in Right of Alberta, as represented by the Minister of Education. Alberta Education, Programs of Study and Resources Sector: Mathematics, Arts and Communication, 8th Floor, 44 Capital Boulevard, 10044 - 108 Street NW, Edmonton, Alberta, Canada, T5J 5E6.

Permission is given by the copyright owner to reproduce this resource for educational purposes and on a nonprofit basis, with the exception of materials cited for which Alberta Education does not own copyright.

Acknowledgements

This resource was developed as a joint project of Alberta classroom teachers and staff at Alberta Education. The cooperation of the Alberta Teachers' Association and the following school jurisdictions is greatly appreciated.

Calgary Roman Catholic Separate School District No. 1
Calgary School District No. 19
Chinook's Edge School Division No. 73
Edmonton Catholic Separate School District No. 7
Edmonton School District No. 7
Elk Island Public Schools Regional Division No. 14
Grande Prairie Roman Catholic Separate School District No. 28
Greater North Central Francophone Education Region No. 2
Greater Southern Public Francophone Education Region No. 4
Greater St. Albert Catholic Regional Division No. 29
Northern Gateway Regional Division No. 10
Parkland School Division No. 70
Peace River School Division No. 10
Pembina Hills Regional Division No. 7
Red Deer Catholic Regional Division No. 39
Red Deer Public School District No. 104
Rocky View School Division No. 41
St. Albert Protestant Separate School District No. 6
Wild Rose School Division No. 66

The Alberta Education team members were from the Programs of Study and Resources Sector, Assessment Sector, and French and International Education Services Sector.

Table of Contents

Acknowledgements iii
Introduction 1
Purpose 1
Definitions and Terminology 1
Standards for Mathematics 10-3 2
General Notes 4
Topic: Measurement 5
Topic: Geometry 15
Topic: Number 28
Topic: Algebra 33
Appendix 1: Mathematics Directing Words 35
Appendix 2: Mathematics 10-3 Formulas and Conversions 37

INTRODUCTION

Mathematics 10-3 was provincially implemented in September 2010. Teachers participating in focus groups during the development of the program of studies expressed a need for a common understanding of the curriculum and assessment standards. In response to this need, and in keeping with Alberta Education's goal of establishing and effectively communicating clear outcomes and high standards, this standards resource was developed.

This resource is designed to support the implementation of the Alberta Mathematics Grades 10-12 Program of Studies, which can be found at http://education.alberta.ca/media/655889/math10to12.pdf.
Teachers are strongly encouraged to consult the program of studies for details about the philosophy of the program.

PURPOSE

Outcomes with Assessment Standards for Mathematics 10-3 links the achievement indicators for the specific outcomes from the program of studies with information and commentaries about standards. Its purpose is to provide teachers of Mathematics 10-3 with clearly stated standards to use as guidelines in their classroom instruction and assessment practices.

DEFINITIONS AND TERMINOLOGY

Standards

A standard is a reference point used in planning and evaluation. In evaluating educational performance, the following standards apply:

- Curriculum and assessment standards apply to the assessment of individual students.
- Achievement standards apply to the assessment of student populations.

In this resource, only curriculum and assessment standards are discussed.

Curriculum Standards

Curriculum standards are outcomes for a course within a program. The curriculum standards for Mathematics 10-3 are defined by the general and specific outcomes outlined in the program of studies. They are further clarified by the achievement indicators, which reflect the scope of each specific outcome.

Outcomes

General outcomes are concise statements identifying what it is that students are expected to know and be able to do upon completion of a course within a program.

Specific outcomes are statements identifying the component knowledge, skills and attitudes of a general outcome. Specific outcomes identify a range of contexts in which the general outcomes apply.

In the specific outcomes, the word including indicates that any ensuing items must be addressed to fully meet the learning outcome. The phrase such as indicates that the ensuing items are provided for clarification and are not requirements that must be addressed to fully meet the learning outcome.

The word and used in an outcome indicates that both ideas must be addressed to fully meet the learning outcome, although not necessarily at the same time or in the same question.

Achievement Indicators

Achievement indicators are samples of how students may demonstrate their achievement of the goals of a specific outcome. The range of samples provided is meant to reflect the scope of the specific outcome.

The word and used in an achievement indicator implies that both ideas should be addressed at the same time or in the same question.

Assessment Standards

Assessment standards are the criteria used for judging individual student achievement relative to the curriculum standards.

STANDARDS FOR MATHEMATICS 10-3

The assessment standards for Mathematics 10-3 include an acceptable and an excellent level of performance. Student performance should be measured on a range of tasks, some of which are routine and obvious tasks in familiar contexts, and others which are nonroutine tasks in unfamiliar contexts. In many cases, a correlated example from the authorized resources is referenced to assist in assessing student performance. The authorized resources for Mathematics 10-3, published by Pacific Educational Press, are:

- MathWorks 10: Student Resource; and
- MathWorks 10: Teacher Resource.

Acceptable Standard

The acceptable standard of achievement in Mathematics 10-3 is met by students who receive a course mark between and including 50 percent and 79 percent. Typically, these students have gained new skills and a basic knowledge of the concepts and procedures relative to the general and specific outcomes defined for Mathematics 10-3 in the program of studies. These students can apply this knowledge to a limited range of familiar problem contexts.

Standard of Excellence

The standard of excellence for achievement in Mathematics 10-3 is met by students who receive a course mark at or above 80 percent. Typically, these students have gained a breadth and depth of understanding regarding the concepts and procedures, as well as the ability to apply this knowledge to a broad range of familiar and unfamiliar problem contexts.

Description of Standards

The following statements describe what is expected of Mathematics 10-3 students who meet the acceptable standard or the standard of excellence on independent work. The statements represent the standards against which student achievement is measured.

Acceptable Standard	Standard of Excellence
Students who meet the acceptable standard in Mathematics 10-3 consistently perform acceptable work on routine and obvious tasks in familiar contexts.	Students who meet the standard of excellence in Mathematics 10-3 consistently perform excellent work on routine and obvious tasks in familiar contexts, and acceptable work on nonroutine tasks in unfamiliar contexts.
These students have a basic understanding of the concepts and procedures outlined in the program of studies. They demonstrate their understanding in concrete, pictorial and symbolic modes, and can translate from one mode to another. They perform the mathematical operations and procedures that are fundamental to Mathematics 10-3 and apply what they know in daily living contexts.	These students have a comprehensive understanding of the concepts and procedures outlined in the program of studies. They demonstrate their understanding in concrete, pictorial and symbolic modes, and can translate from one mode to another. They perform the mathematical operations and procedures that are fundamental to Mathematics 10-3, apply what they know in daily living contexts and provide alternative solution procedures to verify results.
To meet the acceptable standard, students communicate about mathematical situations in an understandable way, using appropriate everyday and mathematical terms. They understand mathematical questions containing objects, diagrams or numbers in familiar contexts, and they construct mathematical models.	To meet the standard of excellence, students communicate about mathematical situations in a clear way, using numbers, diagrams and appropriate mathematical terms. They understand mathematical questions contanining objects, diagrams or numbers in familiar and unfamiliar contexts, and they construct mathematical models by translating words into suitable numbers, diagrams, tables, equations and variables.
Students meeting the acceptable standard apply what they know in solving straightforward problems in familiar settings and in analyzing simple mathematical models. They describe the steps they used to solve	Students meeting the standard of excellence apply what they know in solving routine and nonroutine problems in a broad range of settings. They describe the steps they used to solve a particular problem, defend a particular problem, and verify and defend their solution to the problem.
their solution to the problem, and, where appropriate, provide alternative	
solution procedures to verify results.	

GENERAL NOTES

- All mathematical processes should be used and integrated throughout the outcomes.
- Teachers should try to provide students with illustrative examples and contextual problems that are representative of the trades.
- Technology [T], including calculators and computers, has been listed as one of the mathematical processes to be emphasized for some outcomes, with the expectation that students will have access to technology when completing the outcomes. If technology has not been specifically listed for a particular outcome, teachers may, at their discretion, use it to assist students in exploring patterns and relationships when learning a concept. It is expected, however, that technology will not be considered when assessing students' understandings of such outcomes.
- Each specific outcome is accompanied by notes that address some of the questions that may arise when teaching the concepts. The assessment standards for each outcome are described in a chart that indicates, for each achievement indicator, whether the acceptable standard, the standard of excellence or, in some cases, both standards may be applicable (\checkmark). Some check marks are accompanied by qualifying statements. Shaded regions indicate that the standard does not apply for the given achievement indicator. In many cases, a correlated example from the authorized resources is referenced in the chart to illustrate the standards. The authorized resources for Mathematics 10-3, published by Pacific Educational Press, are:
- MathWorks 10: Student Resource; and
- MathWorks 10: Teacher Resource.
- A partial solution to a problem is a solution in which a student demonstrates a basic understanding of the problem and the mathematical concepts required in solving the problem. However, the student is unable to complete the solution correctly for a variety of reasons, such as not being able to correctly
connect the concepts involved or not being able to avoid procedural errors. For example, in solving a problem using right-angle trigonometry, given an angle and the measure of the side opposite that angle, a student may be able to draw a diagram to correctly represent the situation and identify the appropriate trigonometric ratio needed to solve the problem but then makes procedural errors in solving for the measure of the side adjacent. Note that assessment of student learning is the responsibility of the teacher, and what is considered a partial solution may vary according to the question or task presented.

Topic: Measurement

General Outcome: Develop spatial sense through direct and indirect measurement.

Specific Outcome

It is expected that students will:

1. Demonstrate an understanding of the Système International (SI) by:

- describing the relationships of the units for length, area, volume, capacity, mass and temperature
- applying strategies to convert SI units to imperial units. [C, CN, ME, V]

Notes

- Students have been working with SI units of measure since Grade 3. While the SI system of measure is the official measurement system in Canada, students need to have exposure to and experience with imperial units of measure. Some commerce in Canada, primarily involving imports from and exports to the United States, is still conducted in imperial units. Trades, such as those involved in the building industry, continue to use imperial units of measure to define standard dimensions of materials.
- This is the first time that imperial units are formally addressed in the Kindergarten to Grade 12 curriculum.
- Students may not be familiar with the units for length, area, volume, capacity, mass and temperature in the SI and imperial systems of measurement.
- Measurements in the imperial system are expressed primarily in fraction form, while measurements in the SI system are expressed in decimal form.
- Students are expected to perform the four arithmetic operations on decimals and fractions with and without the use of technology.
- Denominators for fractional measurements should be contextually appropriate; e.g., in construction, halves, quarters, eighths, sixteenths, thirty-seconds and sixty-fourths.
- Students should be encouraged to use diagrams to develop a conceptual understanding of square and cubic units of measure.
- Measurements in the SI system that use prefixes deci, centi and milli are expressed as decimals.
- Negative exponents are not an outcome for the course and have not been studied in previous grades (e.g., $\frac{1}{100}$ not 10^{-2}).
- Proportional reasoning solves for an unknown value by comparing the unknown value to known values, using ratios and proportions. Students are expected to use proportional reasoning when converting units within and between the two measurement systems.
- Technology [T] has not been identified as one of the mathematical processes to be emphasized in completing this outcome. Conversions between systems should not be completed by entering data into a conversion program. Technology may be used, where appropriate, in solving a proportion.
- The base SI unit of thermodynamic temperature is Kelvin, but the intent of the outcome is to establish the relationship between Fahrenheit and Celsius temperature measures.
- Students are not expected to memorize long lists of conversion factors. Basic conversion factors, especially those between the SI and imperial systems of measure, shall be provided.
- When converting from SI to imperial, decimals are acceptable in the resulting imperial units. Converting the resulting decimal to the nearest practical fraction could be developed as an enrichment activity.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome. (It is intended that this outcome be limited to the base units and the prefixes milli, centi, deci, deca, hecto and kilo.)

Achievement Indicators	Acceptable Standard	Standard of Excellence
1.1 Explain how the SI system was developed, and explain its relationship to base ten.	\checkmark	
1.2 Identify the base units of measurement in the SI system, and determine the relationship among the related units of each type of measurement.	\checkmark	
1.3 Identify contexts that involve the SI system.	\checkmark	
1.4 Match the prefixes used for SI units of measurement with the powers of ten.	\checkmark	
1.5 Explain, using examples, how and why decimals are used in the SI system.	\checkmark Provide a partial explanation, with examples, as to how and why the SI system uses decimals.	\checkmark Provide a complete explanation, with examples, as to how and why the SI system uses decimals.
1.6 Provide an approximate measurement in SI units for a measurement given in imperial units; e.g., 1 inch is approximately 2.5 cm .	$\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned} \text { p. 111, \#3 }$	
1.7 Write a given linear measurement expressed in one SI unit in another SI unit.	$\begin{array}{\|} \text { RESOURCE } \\ \text { STUDENT } \end{array} \text { p. 134, \#1 }$	
1.8 Convert a given measurement from SI to imperial units by using proportional reasoning (including formulas); e.g., Celsius to Fahrenheit, centimetres to inches.	\checkmarkComplete simple conversions involving units given in the conversion factor. STUDENT RESOURCE $:$ p. 111, \#2 STUENT RESOURCE $:$ p. 144, \#4	\checkmark Perform multistep conversions where the given units do not match the units in the conversion factor. STUDENT RESOURCE : p. 111,\#1

Measurement (continued)

Specific Outcome

It is expected that students will.

2. Demonstrate an understanding of the imperial system by:

- describing the relationships of the units for length, area, volume, capacity, mass and temperature
- comparing the American and British imperial units for capacity
- applying strategies to convert imperial units to SI units. [C, CN, ME, V]

Notes

- Students may not be familiar with the units for length, area, volume, capacity, mass and temperature in the SI and imperial systems of measurement.
- British and American imperial units for capacity are not the same. The adoption of the SI system of measurement was done by many countries to establish a uniform system of measurement for commerce.
- Measurements in the imperial system are expressed primarily in fraction form, while measurements in the SI system are expressed in decimal form.
- Students are expected to perform the four arithmetic operations on decimals and fractions with and without the use of technology.
- Denominators for fractional measurements should be contextually appropriate; e.g., in construction, halves, quarters, eighths, sixteenths, thirty-seconds and sixty-fourths.
- Students should be encouraged to use diagrams to develop a conceptual understanding of square and cubic units of measure.
- Technology [T] has not been identified as one of the mathematical processes to be emphasized in completing this outcome. Conversions between systems should not be completed by entering data into a conversion program. Technology may be used, where appropriate, in solving a proportion.
- Proportional reasoning solves for an unknown value by comparing the unknown value to known values, using ratios and proportions. Students are expected to use proportional reasoning when converting units within and between the two measurement systems.
- Contexts for the imperial system should be relevant; e.g., measurements in a recipe, building materials, landscaping, travelling to countries that use the imperial system of measure.
- Students are not expected to memorize long lists of conversion factors. Basic conversion factors, especially those between the SI and imperial systems of measure, shall be provided.
- Conversions between SI and imperial units should be limited to commonly used linear units of measure; e.g., centimetres \leftrightarrow inches, metres \leftrightarrow yards or kilometres \leftrightarrow miles. Unusual conversions, e.g., converting miles to millimetres, should be avoided.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.

Achievement Indicators	Acceptable Standard	Standard of Excellence
2.1 Explain how the imperial system was developed.	\checkmark	
2.2 Identify commonly used units in the imperial system, and determine the relationships among the related units.	\checkmark	
2.3 Identify contexts that involve the imperial system.	\checkmark	
2.4 Explain, using examples, how and why fractions are used in the imperial system.	\checkmark Provide a partial explanation, with examples, as to how and why the imperial system uses fractions.	\checkmark Provide a complete explanation, with examples, as to how and why the imperial system uses fractions.
2.5 Compare the American and British imperial measurement systems; e.g., gallons, bushels, tons.	$\checkmark \begin{gathered} \\ \\ \\ \\ \text { RESODENT } \\ \text { RESOURCE } \end{gathered} \text { : p. 132, \#4 }$	
2.6 Provide an approximate measure in imperial units for a measurement given in SI units; e.g., 1 litre is approximately $\frac{1}{4}$ US gallon.	$\begin{aligned} & \text { STUDENT } \begin{array}{l} \text { p. 111, } \\ \text { RESOURCE } \end{array} \\ & \text { Mental Math } \\ & \text { \& Estimation } \\ & \hline \end{aligned}$	
2.7 Write a given linear measurement expressed in one imperial unit in another imperial unit.		
2.8 Convert a given measure from imperial to SI units by using proportional reasoning (including formulas); e.g., Fahrenheit to Celsius, inches to centimetres.	\checkmarkComplete simple conversions involving units given in the conversion factor. \quad STUDENT $:$ p. 132, \#1 RESOURCE \quad STUDENT $:$ p. 144, \#3 RESOURCE	\checkmark Perform multistep conversions where the given units do not match the units in the conversion factor. $\begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array} \text { p. 166, \#5b }$

Outcomes with Assessment Standards for Mathematics 10-3
©Alberta Education, Alberta, Canada

Measurement (continued)

Specific Outcome

It is expected that students will:
3. Solve and verify problems that involve SI and imperial linear measurements, including decimal and fractional measurements. [CN, ME, PS, V]

Notes

- Students are expected to perform the four arithmetic operations on decimals and fractions with and without the use of technology.
- Denominators for fractional measurements should be contextually appropriate; e.g., in construction, halves, quarters, eighths, sixteenths, thirty-seconds and sixty-fourths.
- A referent is something familiar that can be used to estimate a measurement. While there are some commonly used measurement referents; e.g., 1 foot is approximately the length of a person's foot, students are expected to develop their own referents for the basic units of length in each system.
- It is expected that students will use a variety of measuring instruments; e.g., ruler, yardstick, metre-stick, measuring tape, thermometer, trundle wheel, caliper, micrometer, laser, sonar.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome. (It is intended that the four arithmetic operations on decimals and fractions be integrated into the problems.)

Achievement Indicators	Acceptable Standard	Standard of Excellence
3.1 Identify a referent for a given common SI or imperial unit of linear measurement.	\checkmark Identify referents for millimetre, centimetre, metre, inch, foot, yard, kilometre and mile. student : $\begin{aligned} & \text { p. } 96, \\ & \text { Activity }\end{aligned}$ RESOURCE 3.1,\#4	
3.2 Estimate a linear measurement, using a referent.	$\begin{aligned} \text { STUDENT } \end{aligned} \begin{aligned} & \text { p. 97, } \\ & \text { RESOURCE } \end{aligned} \text { A Activity } \begin{aligned} & \text { 3.1, \#5 } \end{aligned}$	
3.3 Measure inside diameters, outside diameters, lengths, widths of various given objects, and distances, using various measuring instruments.	\checkmark Determine measurements with reasonable accuracy.	\checkmark Determine measurements with consistency and greater accuracy.
3.4 Estimate the dimensions of a given regular 3-D object or 2-D shape, using a referent; e.g., the height of the desk is about three rulers long, so the desk is approximately three feet high.	$\begin{gathered} \text { STUDENT } \\ \text { RESOURCE } \end{gathered}: \begin{aligned} & \text { p. } 9 \text { Activity } \\ & \text { A.1, \#5 } \end{aligned}$	
3.5 Solve a linear measurement problem including perimeter, circumference, and length + width + height (used in shipping and air travel).	$\underbrace{:}_{\substack{\text { STUDENT } \\ \text { SESORCE }}} \text { p. 102, \#3, } 4$	
3.6 Determine the operation that should be used to solve a linear measurement problem.	$\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned} \text { : p. 103, \#6 }$	

(continued)

Achievement Indicators	Acceptable Standard	Standard of Excellence
3.7 Provide an example of a situation in which a fractional linear measurement would be divided by a fraction.	\checkmark Provide an example of a situation in which a fraction is divided by a whole number. $\begin{aligned} & \text { p. 116, } \\ \text { STUDENT }: & \text { Activity } \\ \text { RESOURCE } & 3.6 \end{aligned}$	\checkmark Provide an example of a situation in which a fraction is divided by a fraction.
3.8 Determine, using a variety of strategies, the midpoint of a linear measurement such as length, width, height, depth, diagonal and diameter of a 3-D object, and explain the strategies.	\checkmark Solve a problem, in which a diagram is given, using one strategy with a partial explanation.	\checkmark Solve a problem, in which a diagram is not given, using multiple strategies and a complete explanation.
3.9 Determine if a solution to a problem that involves linear measurement is reasonable.	\checkmark Identify and correct an obvious error in a solution.	\checkmark Identify and correct a less obvious error in a solution.

Measurement (continued)

Specific Outcome

It is expected that students will:
4. Solve problems that involve SI and imperial area measurements of regular, composite and irregular 2-D shapes and 3-D objects, including decimal and fractional measurements, and verify the solutions.
[ME, PS, R, V]

Notes

- Prior knowledge from previous grade levels includes the: - surface area of right rectangular prisms, right triangular prisms and right cylinders (Grade 8)
- surface area of composite 3-D objects (Grade 9).
- Students are expected to perform the four arithmetic operations on decimals and fractions with or without the use of technology.
- Denominators for fractional measurements should be contextually appropriate; e.g., in construction, halves, quarters, eighths, sixteenths, thirty-seconds and sixty-fourths.
- A referent is something familiar that can be used to estimate a measurement. Students are expected to develop their own referents for the basic units of area in each system.
- Estimates using referents should be checked to allow students to adjust their referents.
- Students are expected to sketch diagrams to help them develop conceptual understanding.
- Conversion factors should be developed with visualization; e.g., a square foot measures 1 foot by 1 foot; therefore, since 1 foot is equivalent to 12 inches, a square foot can be written as 12 inches by 12 inches or 144 square inches.
- Students are expected to write area units carefully to avoid confusion; e.g., 3 square feet is not the same as a 3 -foot square. A 3-foot square has an area of 9 square feet.
- Teachers are expected to develop conversion factors and formulas with students.
- In problems that involve multiple steps, rounding in calculations is to be done only after the last step.
- Contextual applications should be relevant and authentic.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome. (It is intended that the four arithmetic operations on decimals and fractions be integrated into the problems.)

Achievement Indicators	Acceptable Standard	Standard of Excellence
4.1 Identify and compare referents for area measurements in SI and imperial units.	\checkmark	
4.2 Estimate an area measurement, using a referent.	$\begin{gathered} \text { STUDENT } \\ \text { RESOURCE } \end{gathered}: \begin{aligned} & \text { p. 111, } \\ & \text { Discuss } \\ & \text { the Ideas } \end{aligned}$	
4.3 Identify a situation where a given SI or imperial area unit would be used.	\checkmark	
4.4 Estimate the area of a given regular, composite or irregular 2-D shape, using an SI square grid and an imperial square grid.	\checkmark Estimate the area of regular shapes and irregular shapes that can be broken into regular shapes.	\checkmark Estimate the area of irregular or composite shapes. $\underset{\text { RESOURCE }}{\underset{\text { STUDENT }}{ }: \begin{array}{l} \text { p. } 111, \\ \text { Discuss } \\ \text { the Ideas } \end{array}}$
4.5 Solve a contextual problem that involves the area of a regular, a composite or an irregular 2-D shape.	\checkmark Solve problems involving no more than two shapes. $\begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array} \text { : p. 111, \#4 }$	\checkmark Solve problems involving more than two shapes. $\begin{array}{r} \text { STUDENT : p. 112, \#8 } \\ \text { RESOURCE } \end{array}$
4.6 Write a given area measurement expressed in one SI unit squared in another SI unit squared.	\checkmark Convert area measurement in the SI system if given the conversion factor.	\checkmark Convert area measurement in the SI system even if the conversion factor must be developed.
4.7 Write a given area measurement expressed in one imperial unit squared in another imperial unit squared.	\checkmark Convert area measurement in the imperial system if given the conversion factor.	Convert area measurement in the imperial system even if the conversion factor must be developed.

| (continued) | | |
| :--- | :--- | :--- | :--- |
| Achievement Indicators | Acceptable Standard | Standard of Excellence |
| Solve a problem, using formulas for determining the areas of regular, composite and | | |
| irregular 2-D shapes, including circles. | | |

Topic: Geometry

General Outcome: Develop spatial sense.

Specific Outcome

It is expected that students will:

1. Analyze puzzles and games that involve spatial reasoning, using problem-solving strategies.
[C, CN, PS, R]

Notes

- Puzzles and games used should involve spatial reasoning. Numerical reasoning and logical reasoning are addressed in grades 11 and 12, respectively.
- Problem-solving strategies are crucial and will vary in the analysis of puzzles and games.
- Students can use familiar puzzles and games or discover new ones.
- A variety of puzzles and games should be used; e.g.,
- board games
- online puzzles and games
- appropriate selections for gaming systems
- pencil and paper games.
- One source of online puzzles and games is the National Library of Virtual Manipulatives.
- Puzzles and games involving spatial reasoning could include Lights Out, Fifteen Puzzles, Pattern Blocks, Peg Puzzle, Pentominoes, Polyominoes, Towers of Hanoi, Magic Squares, Tic-Tac-Toe, Pythagorean Puzzles, Connect Four, Nim, Checkers, Sequence, Jenga, KerPlunk, Tangrams, Othello, Dots and Boxes (Capture), Pipelayer, Sprouts, Tower Defense Games, Battleship, Tetris and Rush Hour Traffic.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome. (It is intended that this outcome be integrated throughout the course by using sliding, rotation, construction, deconstruction and similar puzzles and games.)

Achievement Indicators	Acceptable Standard	Standard of Excellence
1.1 Determine, explain and verify a strategy to solve a puzzle or to win a game; e.g., - guess and check - look for a pattern - make a systematic list - draw or model - eliminate possibilities - simplify the original problem - work backward - develop alternative approaches.	\checkmark Determine and verify a strategy. $\underset{\text { RESOURCE }}{\text { STUDENT }}: \begin{aligned} & \text { p. } 22, \\ & \text { Puzzle } \\ & \text { it Out } \end{aligned}$	\checkmark Provide a complete explanation of the strategy and communicate the strategy to others.
1.2 Identify and correct errors in a solution to a puzzle or in a strategy for winning a game.	\checkmark Identify and correct an obvious error in a simple puzzle or game. $\begin{array}{r} \text { STUDENT }: \begin{array}{l} \text { p. 314, } \\ \text { RESOURCE } \end{array} \\ \end{array}$	\checkmark Identify and correct a less obvious error in a complex puzzle or game.
1.3 Create a variation on a puzzle or a game, and describe a strategy for solving the puzzle or winning the game.	\checkmark Modify a puzzle or game with a simple variation and provide revised rules and strategies. STUDENT Resource $:$p. 71, Puzzle it out	\checkmark Modify a puzzle or game with a complex variation and provide revised rules and strategies. $\begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array} \begin{aligned} & \text { p. 255, } \\ & \text { it Ouzzle } \end{aligned}$

Geometry (continued)

Specific Outcome

It is expected that students will:
2. Demonstrate an understanding of the Pythagorean theorem by:

- identifying situations that involve right triangles
- verifying the formula
- applying the formula
- solving problems.
[C, CN, PS, V]

Notes

- Prior knowledge from previous grade levels includes:
- the Pythagorean theorem (Grade 8)
- square roots (Grade 8)
- similar polygons (Grade 9).
- Right angles can be described in context using terminology; e.g., perpendicular, plumb or square.
- Algebra skills may be reinforced by having students manipulate the Pythagorean theorem formula to find the length of a leg rather than the hypotenuse (see Topic: Algebra, Specific Outcome 1).
- Students are expected to create sketches to illustrate situations described in problems.
- In problems that involve multiple steps, rounding in calculations is to be done only after the last step.
- Right triangles should be given in various orientations.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.

| Achievement Indicators | Acceptable Standard | Standard of Excellence |
| :--- | :--- | :--- | :--- |

(continued)

Achievement Indicators	Acceptable Standard	Standard of Excellence
2.7	Solve a problem, using the Pythagorean theorem.	\checkmarkSolve for the length of any side
	in a right triangle, Solve a multiple-step problem where with or without a more than one right triangle is required	
	diagram given in	the question.
to solve for the		

Geometry (continued)

Specific Outcome

It is expected that students will:
3. Demonstrate an understanding of similarity of convex polygons, including regular and irregular polygons. [C, CN, PS, V]

Notes

- Prior knowledge from previous grade levels includes:
- geometric constructions; i.e., bisecting angles, bisecting segments and perpendicular bisectors (Grade 7)
- the sum of interior angles in triangles (Grade 7)
- the similarity of polygons and drawing scale diagrams (Grade 9).
- Students require a compass, ruler and protractor to complete Achievement Indicator 3.5.
- Interior angles and sums of interior angles of convex polygons are studied. Concave polygons are not explored.
- Students are expected to develop strategies to reproduce angles from a sketch.
- Achievement Indicator 3.6 refers to "nested" right triangles and provides a foundation for the development of trigonometry in Specific Outcome 4 (Topic: Geometry).
- Contextual problems that are relevant and authentic should be taken from the trades or the workplace.
- Examples and nonexamples should be used to identify regular polygons, irregular polygons and convex polygons.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.

Achievement Indicators	Acceptable Standard	Standard of Excellence
3.1 Determine, using angle measurements, if two or more regular or irregular polygons are similar.	$\begin{aligned} & \text { RTUDENT } \\ & \text { RESOURCE } \end{aligned} \text { p. 233,\#3 }$	
3.2 Determine, using ratios of side lengths, if two or more regular or irregular polygons are similar.	$\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned} \text { p. 234, \#5 }$	
3.3 Explain why two given polygons are not similar.	$\begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array}: \begin{gathered} \text { pp. 245, } \\ 245, \# 7 \end{gathered}$	
3.4 Explain the relationships between the corresponding sides of two polygons that have corresponding angles of equal measure.	$\begin{gathered} \text { STUDENT } \\ \text { RESOURCE } \end{gathered} \text { p. 233, \#4 }$	
3.5 Draw a polygon that is similar to a given polygon.	$\begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array} \text { p. 253,\#2 }$	
3.6 Explain why two or more right triangles with a shared acute angle are similar.	\checkmark Provide a partial explanation. STUDENT Resource : p. 261, \#1	\checkmark Provide a complete explanation. STUDENT: p. 259, Resource Example 1
3.7 Solve a contextual problem that involves similarity of polygons.	\checkmark Solve simple problems involving similar polygons. student RESOURCE: p. 234, \#6	\checkmark Solve complex problems involving similar polygons. $\begin{gathered} \text { STUDENT } \\ \text { RESOURCE } \end{gathered} \text { p. 254, \#5 }$

Geometry (continued)

Specific Outcome

It is expected that students will:
4. Demonstrate an understanding of primary trigonometric ratios (sine, cosine, tangent) by:

- applying similarity to right triangles
- generalizing patterns from similar right triangles
- applying the primary trigonometric ratios
- solving problems.
[CN, PS, R, T, V]
[ICT: C6-4.1]

Notes

- Prior knowledge from previous grade levels includes: - the Pythagorean theorem (Grade 8) - similar polygons (Grade 9).
- This is the first time trigonometry is developed in the Kindergarten to Grade 12 curriculum.
- Conceptual understanding of the trigonometric ratios should be developed through an understanding of similar triangles.
- In problems that involve multiple steps, rounding in calculations is to be done only after the last step.
- Algebra skills may be reinforced by having students manipulate a trigonometric equation to isolate the unknown value (Topic: Algebra, Specific Outcome 1).
- Proportions are used to calculate an indirect measurement when direct measurement is not possible or feasible; e.g., height of a tree.
- Estimation should be encouraged to check if answers are "reasonable."
- Students are expected to visualize and model to assist in problem solving.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.

Achievement Indicators	Acceptable Standard	Standard of Excellence	
4.1	Show, for a specified acute angle in a set of similar right triangles, that the ratios of the length of the side opposite to the length of the side adjacent are equal, and generalize a formula for the tangent ratio.	\checkmark	\checkmark
4.2	Show, for a specified acute angle in a set of similar right triangles, that the ratios of the length of the side opposite to the length of the hypotenuse are equal, and generalize a formula for the sine ratio.	STUDENT RESOURCE	pp. 283-284, Mathore the

Geometry (continued)

Specific Outcome

It is expected that students will:
5. Solve problems that involve parallel, perpendicular and transversal lines, and pairs of angles formed between them. [C, CN, PS, V]

Notes

- Prior knowledge from previous grade levels includes parallel and perpendicular line construction (Grade 7).
- Protractors should be used to develop some of the angle relationships.
- Teaching Specific Outcome 6 (Topic: Geometry) first may assist in the successful completion of this outcome.
- Technology [T] has not been identified as one of the mathematical processes to be emphasized in completing this outcome. Technology may be used to develop understanding of the relationships of angles formed by parallel lines and a transversal.
- Achievement Indicator 5.7 connects to Topic: Geometry, Specific Outcome 2.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.

Achievement Indicators	Acceptable Standard	Standard of Excellence
5.1 Sort a set of lines as perpendicular, parallel or neither, and justify this sorting.	\checkmark	
5.2 Illustrate and describe complementary and supplementary angles.	STUDENT : p. 191, RESOURCE Activity 5.5	
5.3 Identify, in a set of angles, adjacent angles that are not complementary or supplementary.	\checkmark	
5.4 Identify and name pairs of angles formed by parallel lines and a transversal, including corresponding angles, vertically opposite angles, alternate interior angles, alternate exterior angles, interior angles on same side of transversal and exterior angles on same side of transversal.	$\begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array}: \begin{aligned} & \text { pp. 209-210, } \\ & \text { Math } \end{aligned}$	
5.5 Explain and illustrate the relationships of angles formed by parallel lines and a transversal.	Student . p. 213, RESOURCE Example 2	
5.6 Explain, using examples, why the angle relationships do not apply when the lines are not parallel.	$\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned}: \begin{aligned} & \text { pp. 206-207, } \end{aligned}$	
5.7 Determine if lines or planes are perpendicular or parallel, e.g., wall perpendicular to floor, and describe the strategy used.	\checkmark Provide a solution without a description of the strategies used. student RESOURCE : p. 214, \#2	\checkmark Provide a solution with a description of the strategies used. STUDENT :pp. 214-
5.8 Determine the measures of angles involving parallel lines and a transversal, using angle relationships.	$\begin{gathered} \text { STUDENT } \\ \text { RESOURCE } \end{gathered} \text { p. 215, \#4 }$	
5.9 Solve a contextual problem that involves angles formed by parallel lines and a transversal (including perpendicular transversals).	\checkmark Solve simple problems. $\begin{array}{\|} \text { RESUDENT } \\ \text { RESOURCE } \end{array} \text { p. 216,\#7 }$	$\begin{aligned} & \checkmark \text { Solve complex } \\ & \text { problems. } \\ & \text { STUDENT } \\ & \text { RESOURCE }: \text { p. } 223, \# 8 \\ & \hline \end{aligned}$

Geometry (continued)

Specific Outcome

It is expected that students will:
6. Demonstrate an understanding of angles, including acute, right, obtuse, straight and reflex, by:

- drawing
- replicating and constructing
- bisecting
- solving problems.
[C, ME, PS, T, V]
[ICT: C6-4.1]

Notes

- Prior knowledge from previous grade levels includes:
- geometric constructions; e.g., bisecting angles, bisecting segments and perpendicular bisectors (Grade 7)
- the sum of interior angles in triangles (Grade 7)
- the similarity of polygons and drawing scale diagrams (Grade 9).
- A referent is something familiar that can be used to estimate a value; e.g., the face on an analog clock can be used to estimate the measure of an angle.
- A Mira is an I-beam piece of red translucent acrylic plastic used for geometric constructions and investigations.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.

Achievement Indicators	Acceptable Standard	Standard of Excellence
6.1 Draw and describe angles with various measures, including acute, right, straight, obtuse and reflex angles.	$\begin{array}{lll} \checkmark \\ & \\ \\ \text { STUDENT } \\ \text { RESOURCE } \end{array}: \begin{aligned} & \text { p. } 179, \\ & \text { Activity } \\ & 5.1 \end{aligned}$	
6.2 Identify referents for angles.	STUDENT . p. 181, Resource ${ }^{\prime}$ Activity 5.2	
6.3 Sketch a given angle.	$\begin{array}{\|} \text { RTUDENT } \\ \text { RESOURCE } \end{array} \text { p. 185,\#5 }$	
6.4 Estimate the measure of a given angle, using $22.5^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$ and 180° as referent angles.	$\begin{gathered} \text { STUDENT } \\ \text { RESOURCE } \end{gathered} \text { p. 184,\#4 }$	
6.5 Measure, using a protractor, angles in various orientations.	$\begin{gathered} \text { STUDENT } \\ \text { RESOURCE } \end{gathered} \text { p. 184,\#2 }$	
6.6 Explain and illustrate how angles can be replicated in a variety of ways; e.g., Mira, protractor, compass and straightedge, carpenter's square, dynamic geometry software.	\qquad	
6.7 Replicate angles in a variety of ways, with and without technology.	\checkmark Replicate acute and obtuse angles.	\checkmark Replicate a reflex angle.
6.8 Bisect an angle, using a variety of methods.		
6.9 Solve a contextual problem that involves angles.	$\checkmark$$\checkmark$ Solve simple problems. \quadSTUDENT RESOURCE$:$ p. 194, \#5	\checkmarkSolve complex problems.

Topic: Number

General Outcome: Develop number sense and critical thinking skills.

Specific Outcome

It is expected that students will:

1. Solve problems that involve unit pricing and currency exchange, using proportional reasoning.
[CN, ME, PS, R]
[ICT: F2-4.7]

Notes

- Students have studied percentages and their applications in grades 6 to 8 .
- Proportional reasoning solves for an unknown value by comparing the unknown value to known values, using ratios and proportions.
- Cross multiplication should not be used as an isolated strategy for developing conceptual understanding.
- Unit rates can be used as a strategy to solve exchange rate, ratio and proportion problems.
- Consumer awareness should be developed through discussing, explaining and comparing the factors that can influence the decision to purchase an item or a service.
- Currency exchange rates quoted in the media do not reflect the actual rate that will be charged to exchange a currency.
- The price to buy or sell currencies is different and is set by the individual institution.
- Exchange rates fluctuate so the rates quoted in the resource will differ from the current exchange rates.
- Rounding of exchange rates could be one strategy to estimate costs in Achievement Indicator 1.7.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.

Achievement Indicators	Acceptable Standard	Standard of Excellence
1.1 Compare the unit price of two or more given items.	$\begin{gathered} \text { STUDENT } \\ \text { RESOURCE } \end{gathered}: \begin{aligned} & \text { pp. 25-26, } \\ & \text { Activity } 1.3 \end{aligned}$	
1.2 Solve problems that involve determining the best buy, and explain the choice in terms of the cost as well as other factors, such as quality and quantity.	\checkmark Provide an explanation that includes cost. $\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned} \text { p. 27, \#4 }$	\checkmark Provide an explanation that includes cost and the influence of one or more other factors. $\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned} \begin{aligned} & \text { p. 26, Build } \\ & \# 3 \end{aligned}$
1.3 Compare, using examples, different sales promotion techniques; e.g., deli meat at $\$ 2$ per 100 g seems less expensive than $\$ 20$ per kilogram.	STUDENT : p. 37, Build Your Skills, \#3	
1.4 Determine the percent increase or decrease for a given original and new price.	$\begin{gathered} \text { SESUDENT } \\ \text { RESOURCE } \end{gathered} \text { p. 38, \#6 }$	
1.5 Solve, using proportional reasoning, a contextual problem that involves currency exchange.	$\begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array}: \text { p. 48, \#6 }$	
1.6 Explain the difference between the selling rate and purchasing rate for currency exchange.		STUDENT RESOURCE : p. 47,\#5
1.7 Explain how to estimate the cost of items in Canadian currency while in a foreign country, and explain why this may be important.	$\begin{array}{\|} \substack{\text { STUDENT } \\ \text { RESOURCE }} \end{array} \text { p. 48,\#6 }$	
1.8 Convert between Canadian currency and foreign currencies, using formulas, charts or tables.	$\begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array}: \text { p. 48, \#6 }$	

Number (continued)

Specific Outcome

It is expected that students will:
2. Demonstrate an understanding of income, including:

- wages
- salary
- contracts
- commissions
- piecework
to calculate gross pay and net pay
[C, CN, R, T]
[ICT: C6-4.1, C6-4.2, C7-4.2, F2-4.7]

Notes

- Some methods of calculating a person's gross pay will be known to students. Students are expected to share and compare the way they are paid.
- Some deductions will not be familiar to students and will need to be clarified and given in contexts.
- Technology [T] should be used to develop an understanding of how changes in the parameters used to determine a person's pay will influence his or her income. The technology used could include spreadsheets.
- This is the first time that the Canada Pension Plan (CPP) and Employment Insurance (EI) are seen in the Kindergarten to Grade 12 curriculum. Providing current information regarding rules, ages at which contributions begin and rates of contribution may be beneficial.
- Canada Pension Plan (CPP), Employment Insurance (EI) and taxation rates are set by the federal government. Federal legislation can change the rates used to calculate CPP and EI.

Maximum contribution values are also legislated for CPP and EI deductions.

- Students are expected to calculate the dollar amounts for CPP, EI and income tax when the gross pay and the rates for each deduction are given.
- It is not the intent of this outcome to have students complete a personal income tax form.
- Employee and employer perspectives should be considered in the analysis of methods of earning income.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.

Achievement Indicators	Acceptable Standard	Standard of Excellence
2.1 Describe, using examples, various methods of earning income.	student p. 55, RESOURCE Discuss the Ideas, \#1	
2.2 Identify and list jobs that commonly use different methods of earning income; e.g., hourly wage, wage and tips, salary, commission, contract, bonus, shift premiums.	student p. 55, Discuss the deas, \#2	
2.3 Determine in decimal form, from a time schedule, the total time worked in hours and minutes, including time and a half and/or double time.	$\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned} \text { p. 61, \#8 }$	
2.4 Determine gross pay from given or calculated hours worked when given: - the base hourly wage, with and without tips - the base hourly wage, plus overtime (time and a half, double time).		
2.5 Determine gross pay for earnings acquired by: - base wage, plus commission - single commission rate.	$\underset{\text { RESOURCE }}{\text { STUDENT }} \text { : p. } 90, \# 5$	
2.6 Explain why gross pay and net pay are not the same.	\qquad	
2.7 Determine the Canadian Pension Plan (CPP), Employment Insurance (EI) and income tax deductions for a given gross pay.	$\underset{\substack{\text { STUDENT } \\ \text { RESOURCE }}}{ } \text { p. 91, \#8 }$	
2.8 Determine net pay when given deductions; e.g., health plans, uniforms, union dues, charitable donations, payroll tax.	$\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned}$	

(continued)

Achievement Indicators	Acceptable Standard	Standard of Excellence
2.9 Investigate, with technology, "what if ..." questions related to changes in income; e.g., "What if there is a change in the rate of pay?"	$\checkmark \begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array}: \text { p. 60, \#5 }$	
2.10 Identify and correct errors in a solution to a problem that involves gross or net pay.	\checkmark Identify and correct obvious errors. $\begin{array}{r} \text { STUDENT } \\ \text { RESOURCE } \end{array}: \begin{aligned} & \text { p. 56, } \\ & \text { Example } 1 \\ & \hline \end{aligned}$	\checkmark Identify and correct less obvious errors. $\begin{aligned} & \text { STUDENT }: \begin{array}{l} \text { pp. 61-62, } \\ \text { RESOURCE } \end{array} \text { \#9 } \end{aligned}$
2.11 Describe the advantages and disadvantages for a given method of earning income; e.g., hourly wage, tips, piecework, salary, commission, contract work.	\checkmark Determine the best payment method, given a scenario. $\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned} \text { p. 60, \#4 }$	\checkmark Give support to different payment methods by altering a scenario's parameters. $\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned} \text { p. } 62, \# 10$

Topic: Algebra

General Outcome: Develop algebraic reasoning.

Specific Outcome

It is expected that students will:

1. Solve problems that require the manipulation and application of formulas related to:

- perimeter
- area
- the Pythagorean theorem
- primary trigonometric ratios
- income.
[C, CN, ME, PS, R]

Notes

- The general outcome is integrated throughout the course. The specific outcome is integrated as follows.
- Perimeter - Topic: Measurement, Specific Outcome 3
- Area - Topic: Measurement, Specific Outcome 4
- The Pythagorean theorem - Topic: Geometry, Specific

Outcome 2

- Primary trigonometric ratios - Topic: Geometry, Specific Outcome 4
- Income - Topic: Number, Specific Outcome 2
- Students are expected to manipulate formulas to isolate the unknown quantity, when appropriate.
- In Grade 6, students first modelled the preservation of equality in equations. Students are expected to continue to use the preservation of equality to solve equations and to manipulate formulas.

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome. (It is intended that this outcome be integrated throughout the course.)

Achievement Indicators	Acceptable Standard	Standard of Excellence
1.1 Solve a contextual problem that involves the application of a formula that does not require manipulation.		
1.2 Solve a contextual problem that involves the application of a formula that requires manipulation.	\checkmark Solve simple problems. $\begin{aligned} & \text { STUDENT } \\ & \text { RESOURCE } \end{aligned} \text { : p. 280, \#6 }$	\checkmark Solve complex problems. $\begin{gathered} \underset{\substack{\text { STUDENT } \\ \text { RESOURCE }}}{ } \text { p. 282, \#12 } \end{gathered}$
1.3 Explain and verify why different forms of the same formula are equivalent.	\checkmark Verify with partial explanation.	\checkmark Verify with complete explanation.
1.4 Describe, using examples, how a given formula is used in a trade or an occupation.	STUDENT . p. 288, Resource Example 1	
1.5 Create and solve a contextual problem that involves a formula.	\checkmark Create and solve simple problems. \qquad	\checkmark Create and solve complex problems.
1.6 Identify and correct errors in a solution to a problem that involves a formula.	\checkmark Identify and correct obvious errors.	\checkmark Identify and correct less obvious errors.

Appendix 1: Mathematics Directing Words

Discuss	The word discuss will not be used as a directing word on mathematics examinations because it is not used consistently to mean a single activity.
The following words are specific in meaning.	
Algebraically	Use mathematical procedures that involve letters or symbols to represent numbers.
Analyze	Make a mathematical or methodical examination of parts to determine aspects of the whole; e.g., nature, proportion, function, interrelationship.
Compare	Examine the character or qualities of two things by providing characteristics of both that point out their mutual similarities and differences.
Conclude	Point out the differences between two things that have similar or comparable natures.
Contrast/Distinguish	Provide the essential qualities or meaning of a word or concept; make distinct and clear by marking out the limits.

How	Show in what manner or way, with what meaning.
Hypothesize	Form a tentative proposition intended as a possible explanation for an observed phenomenon; i.e., a possible cause for a specific effect. The proposition should be testable logically and/or empirically.
Identify	Recognize and select as having the characteristics of something.
Illustrate	Make clear by providing an example. The form of the example must be specified in the question; i.e., word description, sketch or diagram.
Infer	Form a generalization from sample data; arrive at a conclusion by reasoning from evidence.
Interpret	State the meaning of something; present information in a new form that adds meaning to the original data.
Justify/Show How	Show reasons for or give facts that support a position.
Model	Find a model that does a good job of representing a situation. In mathematics, a model of a situation is a pattern that is supposed to represent or set a standard for a real situation.
Outline	Give, in an organized fashion, the essential parts of something. The form of the outline must be specified in the question; i.e., lists, flowcharts, concept maps.
Predict	State in advance on the basis of empirical evidence and/or logic.
Prove	Establish the truth or validity of a statement for the general case by providing factual evidence or a logical argument.
Relate	Show a logical or causal connection between things.
Sketch	Provide a drawing that represents the key features of an object or a graph.
Solve	Give a solution for a problem; i.e., explanation in words and/or numbers.
Summarize	Give a brief account of the main points.
Trace	Give a step-by-step description of the development.
Verify	Establish, by substitution for a particular case or by geometric comparison, the truth of a statement.
Why	Show the cause, reason or purpose.

Appendix 2: Mathematics 10-3 Formulas and Conversions

1 mile $=1760$ yards	1 inch ≈ 2.54 centimetres
1 yard $=3$ feet	1 mile ≈ 1.6093 kilometres
1 foot $=12$ inches	1 yard ≈ 0.9144 metres
1 ton $=2000$ pounds	1 tonne $=1000$ kilograms
1 pound $=16$ ounces	1 kilogram ≈ 2.2046 pounds
1 cup $=8$ fluid ounces	1 gallon (US) ≈ 3.7854 litres
1 pint $=2$ cups	1 gallon $(\mathrm{imp}) \approx 4.5461$ litres
1 quart $=2$ pints	1 fluid ounce (US) ≈ 29.5735 millilitres
1 gallon $=4$ quarts	1 bushel (US) ≈ 35.2391 litres
1 gallon (imp) ≈ 1.2 gallon (US)	1 metric cup $=250$ millilitres
$c^{2}=a^{2}+b^{2}$	${ }^{\circ} F=\frac{9}{5}{ }^{\circ} C+32$
$A_{\text {circle }}=\Pi r^{2}$	$C_{\text {circle }}=2 \pi r$
$S A_{\text {cone }}=\Pi r^{2}+\Pi r s$	$S A_{\text {cylinder }}=2 \Pi r^{2}+2 \Pi r h$

